SBIR/STTR Award attributes
Future NASA science and exploration missions require significant performance improvements over the state-of-the-art in Power Management and Distribution (PMAD) systems. Space qualified, high voltage power electronics can lead to higher efficiency and significant SWaP-C advantage at the system architecture level and serve as an enabling technology for diverse applications. Gallium Oxide (Ga2O3) is an ultra-wide bandgap semiconductor technology with superior electronic properties for high-voltage power applications. Ga2O3 devices offer higher temperature operation, lower on-resistance, higher breakdown voltages, and higher power conversion efficiency than Silicon power devices. However, their performance in the space environment, including high-energy radiation and wide temperature fluctuations, is largely unknown. A thorough characterization and design effort is essential for advancing this technology to meeting NASA requirements. CFDRC, in collaboration with the University at Buffalo (UB), Vanderbilt University, and KYMA Technologies, will utilize a proven experimental and physics-based modeling approach to address this challenge. In Phase I, we performed irradiation testing for single event effects (SEEs) of beta;-Ga2O3 power MOSFETs from UB (up to 8 kV rating), generated device response data, and identified potential handling/testing challenges with this technology. TCAD modeling of SEEs was performed for insight into physical mechanisms. In Phase II, we will perform additional heavy-ion testing as a function of temperature and bias. Extensive TCAD-based modeling will be performed to identify radiation and temperature dependent mechanisms, and device structure/process modifications for improved radiation tolerance. Promising solutions will be prototyped, tested, and delivered to NASA, along with a technology development roadmap. Participation by KYMA in Phase II and beyond will ensure manufacturability of the space-qualified, beta;-Ga2O3 power MOSFET technology.nbsp;

