Patent attributes
The present disclosure discloses a visual relationship detection method based on adaptive clustering learning, including: detecting visual objects from an input image and recognizing the visual objects to obtain context representation; embedding the context representation of pair-wise visual objects into a low-dimensional joint subspace to obtain a visual relationship sharing representation; embedding the context representation into a plurality of low-dimensional clustering subspaces, respectively, to obtain a plurality of preliminary visual relationship enhancing representation; and then performing regularization by clustering-driven attention mechanism; fusing the visual relationship sharing representations and regularized visual relationship enhancing representations with a prior distribution over the category label of visual relationship predicate, to predict visual relationship predicates by synthetic relational reasoning. The method is capable of fine-grained recognizing visual relationships of different subclasses by mining latent relationships in-between, which improves the accuracy of visual relationship detection.