Synthetic biology

Synthetic biology

Interdisciplinary branch of biology and engineering, applying multiple disciplines to build artificial biological systems for research, engineering, and medical applications.

Synthetic biology is the design and engineering of biologically based parts, novel devices and systems as well as the redesign of existing, natural biological systems. It has the potential to deliver important new applications and improve existing industrial processes - resulting in economic growth and job creation.

As a multidisciplinary field, synthetic biology brings together social scientists, biologists, chemists, engineers, mathematicians, and others to identify major challenges in society and collectively find solutions.

Synthetic biology uses two main working directions for the construction of artificial biological systems with tailored properties: The top-down approach and the bottom-up approach. The top-down approach starts from existing micro-organisms and the genome is manipulated and reduced based on acquired knowledge to achieve a desired property. The bottom-up approach begins at the molecular level from functional biological devices like genome, transcriptome, proteome, metabolome, and aims to assemble these biological parts into an artificial cell or synthetic cell.


January 1, 2000

Genetic toggle switch and repressilator papers

An article published in Nature reports the first genetic circuits had been engineered to carry out designed functions using a genetic toggle switch. Cells that harbored the circuit could toggle between two stable expression states in response to external signals.

With the repressilator, activation of an oscillatory circuit resulted in the ordered, periodic oscillation or repressor protein expression.

These studies combined quantitative design, physical construction, experimental measurement, and hypothesis-driven debugging to construct synthetic circuits, which became a characteristic feature of constructing synthetic circuits.

November 1, 1978

Nobel Prize in Physiology or Medicine for the discovery of restriction enzymes

Werner Arber, Daniel Nathans, and Hamilton Smith share the 1978 Nobel Prize "for the discovery of restriction enzymes and their application to problems of molecular genetics." A November 1978 editorial in Gene states, "The work on restriction nucleases not only permits us easily to construct recombinant DNA molecules and to analyze individual genes but also has led us into the new era of 'synthetic biology' where not only existing genes are described and analyzed but also new gene arrangements can be constructed and evaluated.


+ Add new row

Further reading

Documentaries, videos and podcasts

+ Add new row



Ginkgo Bioworks

Jason Kelly

Boston, Massachusetts, USA

Design custom microbes