GoldenGolden
Advanced Search
Nanotherapeutics

Nanotherapeutics

The field of nanotherapeutics is the application of nanotechnology to medicine and drug development.

Edit ID  10152552 

Meredith Hanel
Meredith Hanel edited on 20 Feb, 2019
Edits made to:
Article (+2166/-1048 characters)
Article
Lipid-based nanoparticles or lipid nanoparticles (LNPs)

LNPs are produced using high pressure homogenization (HPH), solvent emulsification/evaporation, supercritical fluid extraction of emulsions (SFEE), ultrasonication or high speed homogenization and spray drying. Hot or cold processes are used for HPH.

Lipid-based nanoparticles

Liposomes and lipid nanoparticles (LNPs) are similar but slightly different in function and composition. Both are lipid nanoformulations used as drug delivery vehicles and transporting cargo inside a protective outer lipid layer. While liposomes have one or more rings of lipid bilayer surrounding an aqueous pocket, not all LNPs have a contiguous bilayer and some LNPs have a micelle-like structure and encapsulate drugs in a non-aqueous core.

...

Lipid nanoparticles (LNPs)

LNPs are produced using high pressure homogenization (HPH), solvent emulsification/evaporation, supercritical fluid extraction of emulsions (SFEE), ultrasonication or high speed homogenization and spray drying. Hot or cold processes are used for HPH. Solid liquid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of LNPs.

SLNs and NLCs have an average size of 40-1000 nm, spherical morphology and are composed of solid phase lipid and surfactant. The dispersed phase is solid fat and the surfactant is used as emulsifier. SLN lipid components are solid at body and ambient temperatures and may be highly purified triglycerides, complex glyceride mixtures or waxes. To enhance stability surfactants are used and the selection of lipids and surfactants can affect the physiochemical properties and quality including particle size and drug loading. Compared with liposomes, SLNs and NLCs have drug stability, prolonged release. They are safer than polymeric carriers due to avoidance of organic solvents for production. They are amenable to large scale production. LNPs are suitable for encapsulating nucleic acids and are a popular non-viral gene delivery system.

Polyethylene glycol (PEG) is often covalently attached to LNP phospholipids on the outer side which improves stability. Also, PEGylated phospholipids improve the stealth of the drug product as it helps shield from the immune system. The modification prevents blood plasma proteins from absorbing into the liposome surface, allowing more circulation time. Hybrid nanoparticles incorporate PLA or PGLA polymers within a lipid monolayer to facilitate controlled drug release.

...

SLNs and NLCs have an average size of 40-1000 nm, spherical morphology and are composed of solid phase lipid and surfactant. The dispersed phase is solid fat and the surfactant is used as emulsifier. SLN lipid components are solid at body and ambient temperatures and may be highly purified triglycerides, complex glyceride mixtures or waxes. To enhance stability surfactants are used and the selection of lipids and surfactants can affect the physiochemical properties and quality including particle size and drug loading. Compared with liposomes, SLNs and NLCs have drug stability, prolonged release. They are safer than polymeric carriers due to avoidance of organic solvents for production. They are amenable to large scale production.

Golden logo
Text is available under the Creative Commons Attribution-ShareAlike 4.0; additional terms apply. By using this site, you agree to our Terms & Conditions.