Clinical Study attributes
In the last decades, the consumption of energy-dense diets, primarily consisting of highly digestible starchy foods like bread, along with a global increase in obesity rates and a sedentary lifestyle, has emerged as the main contributors to the development of non-communicable diseases such as cardiovascular diseases (CVD) and diabetes type 2. Therefore, there is a need to reduce the starch digestibility of bakery products, and in turn their glycemic index, with a specific emphasis on wheat bread. Several strategies have been used to decrease the glycemic index and insulin response of bread; however, most of these techniques have a detrimental effect on the texture, volume, taste, and color of bread, limiting the consumer's acceptability. Preservation of the native microstructure (cell wall integrity) and employing processing techniques to create a macrostructure (protein network and food matrix) can be used to influence the product structure and therefore how the product is chewed (oral processing), and how these factors can affect carbohydrate digestion and glycemic response. The aim of this study was to examine the effect of different textural characteristics of bread on oral processing in relation to the glycemic and insulin response of the three breads. In the present study, a total of 16 healthy volunteers will be recruited, and if eligible (they need to meet the inclusion and exclusion criteria), they will attend an oral processing test on three breads, a test to measure the glycemic index (ISO) and insulin response. The bread sample composition will be as follows: Bread A is made with 95% durum wheat fine semolina (\< 400 micrometer) + 5% gluten+ 1.2% yeast + 1% salt + 59% water Bread B is made with 80% durum wheat fine semolina (\< 400 micrometer) + 20% gluten+ 1.2% yeast + 1% salt + 59 % water Bread C is made with 80% durum wheat coarse semolina (\> 500 micrometer) + 20% gluten+ 1.2% yeast + 1% salt + 59 % water.